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Abstract
This paper revisits the Levy sections theorem. We extend the scope of the
theorem to time series and apply it to historical daily returns of selected dollar
exchange rates. The elevated kurtosis usually observed in such series is then
explained by their volatility patterns. And the duration of exchange rate pegs
explains the extra elevated kurtosis in the exchange rates of emerging markets.
In the end, our extension of the theorem provides an approach that is simpler
than the more common explicit modelling of fat tails and dependence. Our
main purpose is to build up a technique based on the sections that allows one
to artificially remove the fat tails and dependence present in a data set. By
analysing data through the lenses of the Levy sections theorem one can find
common patterns in otherwise very different data sets.

PACS numbers: 89.65.Gh, 89.75.−k

1. Introduction

Recently, the study of complex systems has attracted the attention of a growing number of
physicists. Scaling laws, self-organized criticality, self-similarity and fractals, just to name a
few, have been found in fields as diverse as biology and economics. These phenomena have
created the need for a general theoretical framework to explain them coherently through a
physics of complex systems.

A branch known as ‘econophysics’ attempted to explain the self-similarity and fat tails
observed in financial distributions that can be responsible for a variety of behaviours and, in
particular, ultraslow convergence to the Gaussian regime [1, 2]. Here one major contribution
was Mantegna and Stanley’s truncated Levy flight [3], which takes into account both the
departures from the classical central limit theorem and the presence of scaling laws.
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More recently, we have pursued a different line of research [4, 5]. Rather than looking
for underlying probability distributions of financial processes, we focused on the role of
nonlinear autocorrelations as well as nonidentically distributed variables. As a result, we
could alternatively explain both the ultraslow convergence and scaling laws.

This paper moves forward and suggests an even simpler approach based on the Levy
sections theorem [6]. The classical central limit theorem does not take chains of random
variables that are dependent into account. Yet the Levy sections theorem is stated under
Levy’s generalization of the classical central limit theorem to encompass dependent variables.
The Levy sections theorem is not to be confused with his stable distribution of infinite variance.
Levy also employed his notion of ‘sections’ to outline a proof for the generalization of the
classical central limit theorem in order to consider the sums of dependent random variables [7].
This proof was reworked afterward using less restrictive assumptions [8, 9]. A full description
of these developments was presented in his subsequent book [10].

Taking Levy sections amounts basically to using the inverse of the predictable quadratic
variation as a random time change to transform a given process into a Gaussian one. And
every continuous martingale is a time-changed Wiener process, where the time change is the
quadratic variation. This is known as the Dambis–Dubins–Schwarz theorem [11–13]. Also,
every semimartingale is a time-changed Wiener process [14]. At first, the last result can be
employed for discrete time processes (time series). And in particular, asset prices can be
considered as time-changed Wiener processes [15, 16]. References on martingale limit theory
and the central limit theorem for martingales can be found elsewhere [17–19].

This paper thus extends the Levy sections theorem’s approach to time series. And we take
historical daily returns of selected dollar exchange rates from both developed and emerging
markets to illustrate our case. By using the Levy sections to account for local volatilities, we
find universal patterns in the random behaviour of actual financial series. Indeed we explain
their stylized fact of elevated kurtosis by the volatilities. And the extra elevated kurtosis of
emerging markets is explained by the duration of exchange rate pegs. The longer foreign
exchange intervention, the greater the kurtosis. One can then build a gauge of exchange rate
peg duration based on the kurtosis. In the end, our extension of the Levy sections theorem
provides an approach that is simpler than the more common explicit modelling of fat tails and
dependence [4, 5].

The main purpose of this paper is to build up a technique based on the sections that allows
one to artificially remove the fat tails and dependence present in a data set, and then compare
this set with a Gaussian one, only to realize that both data sets become very similar if analysed
through the lenses of the Levy sections theorem.

The rest of the paper is organized as follows. Section 2 presents building-block definitions
and the Levy sections theorem. Section 3 extends the previous definitions to time series.
Section 4 illustrates our framework using data from exchange rate returns. Section 5 puts
forward a qualitative gauge of foreign exchange intervention using a Gaussian generator and
section 6 concludes.

2. Definitions and the Levy sections theorem

We consider a chain of random variables denoted by Xn with n ∈ N. The conditional
probability of a given realization xn+1 of Xn+1 is written as P(xn+1|x1, . . . , xn). This means
the probability of xn+1 if the random variables X1, . . . , Xn follow the particular chain walk
x1, . . . , xn. The conditional mean and variance of Xn+1 are

µn = 〈Xn+1〉x1···xn
=

∫
xn+1P(xn+1|x1, . . . , xn) dxn+1 (1)



The Levy sections theorem revisited 5785

and

m2
n = 〈

X2
n+1

〉
x1···xn

− 〈
Xn+1

〉2
x1···xn

=
∫

x2
n+1P(xn+1|x1, . . . , xn) dxn+1 − µ2

n. (2)

Both µn and mn depend on x1, . . . , xn. To simplify notation, we omit the index associated
with the walk dependence. For the chain walk x1, . . . , xn of size n of the random variables
X1, . . . , Xn, we calculate the quantity

λn =
n∑

i=1

m2
i ,

where mi is the conditional variance defined by equation (2). Consider a positive real number
t such that the condition

λn−1 � t < λn (3)

is satisfied. We say that the chain walk x1, . . . , xn belongs to the section t and condition (3)
is called the section condition t . The λn−1 is calculated for the chain walk x1, . . . , xn−1, i.e.
λn−1 = ∑n−1

i=1 m2
i . The section t is made up of all chain walks obeying the section condition

t . Note that the chain walks can have different sizes n. This is due to the fact that different
chain walks determine different series of λ and thus different values of n.

The sum x1 + · · · + xn of elements in a given chain walk belonging to the section t defines
a random variable, denoted by St , whose variance is M2

t = 〈
S2

t

〉 − 〈
St

〉2
. The Levy sections

theorem [7–10] is as follows.

Theorem. For the null conditional means µn = 0 (∀ n ∈ N) and random variables
Xn (∀ n ∈ N) satisfying the Lindeberg conditional condition (see [10], section 67, pp 237–46,
theorem 67.3), the probability distribution of St/

√
t is such that

lim
t→∞ P(St/

√
t < η) = 1√

2π

∫ η

−∞
e− x2

2 dx.

Stationarity is not assumed. This theorem extends the classical central limit theorem to
consider the chains of dependent random variables. The distribution of the variable St/

√
t

converges to a Gaussian of zero mean and unity standard deviation as the section t goes to

infinity. The normalized variable St/Mt , with Mt =
√〈

S2
t

〉 − 〈
St

〉2
, also converges to the

Gaussian of zero mean and unity standard deviation. For a given section t , the variable St/
√

t

(unlike St/Mt ) does not have unity standard deviation. Yet both variables have the same
skewness and kurtosis (and the same is true of the other reduced statistical moments). Both
converge to a normal distribution of unity standard deviation. While the standard deviation
of St/Mt remains constant and equal to unity over the convergence process, the standard
deviation of St/

√
t changes, yet converging asymptotically to unity.

Given the conditional probability of the random variable Xn, its probability distribution
is given by the marginal probability defined as

pn(xn) =
∑

x1,...,xn−1

P(xn|x1, . . . , xn−1),

where the sum considers all possible walks x1, . . . , xn−1 followed by the random variables
X1, . . . , Xn−1. The marginal variance of Xn is calculated from (1), i.e.

ν2
n = 〈

X2
n

〉 − 〈
Xn

〉2 =
∫

x2
npn(xn) dxn −

(∫
xnpn(xn) dxn

)2

.
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Let us define the quantity

σ 2
n ≡

n∑
i=1

ν2
i

/
n,

which we call the cumulated average variance of Xn. Then, let us consider the sum of random
variables Sn of size n defined in the usual way, i.e.

Sn = X1 + · · · + Xn. (4)

Its variance, M2
n = 〈

S2
n

〉 − 〈
Sn

〉2
, satisfies

M2
n =

n∑
i=1

ν2
i +

n∑
i 	=j=1

cor(Xi,Xj )νiνj ,

where cor(Xi,Xj ) is the linear correlation between variables Xi and Xj .
Next we define the quantity

τn = M2
n

/
σ 2

n ,

which we call the variance time of Sn. To understand its meaning first consider the example of
a chain of independent random variables Xn, where cor(Xi,Xj ) = 0 for all i 	= j = 1, . . . , n

and τn = n. The variance time is just the ‘actual’ time n.
Another example shedding light on the meaning of the variance time of Sn is a situation

where the marginal variance ν2
i is stationary, i.e. ν2

i = ν2 for all i ∈ N. In this case, the
variance time becomes

τn = M2
n

ν2
= n +

n∑
i 	=j=1

cor(Xi,Xj ).

Note that the presence of linear correlations can lead to delays and advances in the variance
time when compared to the actual time n. For some chains (e.g. Mandelbrot’s fractional
Brownian motion) the variance of Sn may follow a scaling law such as Mn = AnH , where H

is Hurst exponent. Here, the variance time is τn = n2H . If H > 1/2 (H < 1/2) the variance
time will move ahead (fall behind) the actual time.

We do not attach an index related to the actual time in the random variable St because the
number of terms in St depends on the chain walk. Yet the size n of a chain walk x1, . . . , xn

satisfying the section condition t (equation (3)) can be used as a (random) variable related to
time. We denote it by nt . If the variance of Xn is stationary, the variance time (associated
with the section) τt of St is

τt = M2
t

/
v2.

3. Extending the concepts to time series

A time series (xi)i=1,...,N , where i is a time counter and N is the series size, can be thought
of as a single realization of a random process. We can employ to this series either (1) the
technique based on the marginal probability of a chain of identical random variables [4–7]
applied to study the properties of Sn or (2) the properties associated with the sum St as defined
in equation (4). The technique uses the concept of conditional variance mn of a given chain of
random variables as well as the variable St introduced in section 2. To clarify the differences
between the two approaches, we elaborate further on the definitions associated with Sn and St .
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For the time series, we rewrite the sum Sn for a given n < N as

Sn =
(

n∑
i=1

xi,

n∑
i=1

x1+i , . . . ,

n∑
i=1

xN−n+i

)
.

Such collection of sums is seen as one realization of Sn = X1 + · · · + Xn, where the random
variables Xi with i = 1, . . . , n are identically distributed. The original time series is only
one of all possible realizations, i.e. Xi = X = (x1, x2, . . . , xN). The marginal variance
ν2 = 〈

X2
〉 − 〈X〉2 can be straightforwardly reckoned from the list X. This allows one to

calculate the variance time τn = M2
n/ν2, where M2

n is the variance of Sn. Thanks to the
presence of correlations, the normalized Sn does not converge to a Gaussian.

One big difficulty is learning the values taken by the local volatilities m2
i , since it is

impossible to get them from only one realization of the variable, namely the empirical value
of xi taken from the data set. For this reason we need an extra technique to calculate the local
volatilities. So consider a positive integer q and the new time series

(yn)n=1,...,N−2q,

where the first and the last q terms of (xn)n=1,...,N were dropped, i.e. yn = xn+q, n =
1, . . . , N − 2q. Then the local volatility m2

n is

m2
n = 1

2q + 1

n+2q∑
i=n

x2
i −

(
1

2q + 1

n+2q∑
i=n

xi

)2

(5)

for n = 1, . . . , N − 2q. Here the local volatility is a measure of the conditional variance
associated with a given chain of random variables.

Thus, we can extend the concept of the Levy section t for the collection (yn)n=1,...,N−2q .
The St ends up as the collection of all the sums

yi + yi+1 + · · · + yni−1 + yni
, i ∈ {1, . . . , N − 2q},

such that the condition in equation (3) is fulfilled, i.e.

λni−1 = m2
i + m2

i+1 + · · · + m2
ni−1 � t < m2

i + m2
i+1 + · · · + m2

ni
= λni

,

where every m2
i is calculated by equation (5).

The local volatility definition implies the existence of an integer jt ∈ [0, N − 2q] such
that the section condition t is not fulfilled for i > jt . Indeed, jt is the number of elements
belonging to the collection St , which can be rewritten as

St =
(

n1∑
i=1

yi,

n2∑
i=1

y1+i , . . . ,

njt∑
i=1

yjt−1+i

)
.

For every section t we can define the collection nt = (n1, n2, . . . , njt
) made up of the number

of terms in every sum belonging to the collection St .
For the time series, the variance of St is M2

t = 〈
S2

t

〉 − 〈
St

〉2
and the variance

time of St is τt = M2
t

/
v2. Also, the average number of terms associated with St is

〈nt 〉 = (
n1 + · · · + njt

)/
jt . The purpose of the definition of variance time is to compare

the time evolution of both Sn and St . Unlike Sn, the St is not indexed to actual time, i.e.
no particular time is associated with it. The scale of the variance time, however, allows one
to compare the two. Although other scales can be imagined, in the one suggested here the
variance of both Sn and St is the same for every variance time. So we can assess the evolution
of Sn and St by considering not actual time, but how their respective variances evolve.

We assume that the time series is stationary when doing the sum procedures above.
Though the stationarity assumption for a chain of random variables is not made in the Levy
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Table 1. Description of data.

Country Currency Time period Observations

Britain Pound 4 January 1971 to 10 January 2003 8031
France French franc 4 January 1971 to 31 December 1998 7020
Canada Canadian dollar 4 January 1971 to 10 January 2003 8037
India Indian rupee 2 January 1973 to 10 January 2003 7525
Sri Lanka Sri Lankan rupee 2 January 1973 to 10 January 2003 7171
China Yuan 2 January 1981 to 10 January 2003 5471

sections theorem, our sum procedures to obtain St for an empirical time series make sense
only if the series is stationary. So our sum procedure is to be blamed in the event of a possible
failure of the extension of the Levy sections theorem to time series.

4. Illustrating with exchange rate returns

Now we take historical daily price changes of selected dollar exchange rates from six countries,
namely Britain, France, Canada, India, Sri Lanka and the People’s Republic of China. The
price changes are xn = rn − rn−1, where rn is an exchange rate (dollar price of a foreign
currency) at date n. (The pros and cons of alternative reference units (i.e. ‘returns’) are
discussed elsewhere [1].) The data are collected from the Federal Reserve website. Table 1
gives more details.

We reckon the local volatility of trading weeks (5-day weeks), which means q = 2 in
the formulae in section 3. Figure 1 shows the kurtosis K as a function of the variance time.
Dashed lines are the kurtosis’ evolution of the conventionally ordered series Sn as a function
of τn. The continuous lines are the kurtosis’ evolution of St as a function of τt .

To display the kurtosis behaviour of the sections sums, we start with the initial (very
small) section t = 10−15 and then calculate the sections t + i�t for i = 1, . . . , 99. (One can
start with t = 0 and get similar results.) The values of �t are arbitrarily chosen to enable one
to see smooth variations of the kurtosis as well as the transient period of kurtosis evolution.
We restrict the calculations to 100 steps because this is enough to assuring the asymptotical
convergence of the kurtosis. And also because this allows one to keep the number of terms of
the sums in St small if compared to the original number of terms in an empirical time series.
This prevents introducing spurious correlations among the terms in sequence St . The values
of �t used in every currency are given in table 2. The key features shown in figure 1 are as
follows.

(a) There is kurtosis convergence in the sections sums St of the currencies towards a well-
defined asymptotic state. This does not hold in the sums Sn of the conventionally ordered
exchange rate time series.

(b) The variance time of kurtosis convergence for the sections sums is short. Unlike in the
conventionally ordered sums, the kurtosis convergence for the sections is similar for all
rates. All the sections kurtosis practically reached the limit at the variance time τt = 10.

(c) The kurtosis convergence approaches zero. Developed countries’currencies present
slightly negative kurtosis and emerging countries’ currencies have slightly positive
kurtosis. Unlike in the conventionally ordered series, the sections sums converge to
a distribution resembling the Gaussian.

(d) The sections’ kurtosis evolution presents a similar behaviour for the currencies studied,
regardless of the fact that a country is developed or not. Yet small differences occur
between the series. For instance, the French franc does not approach zero. It converges
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Figure 1. Kurtosis (vertical) versus stochastic time. Dashed lines are for conventionally ordered
series and continuous lines are for the Levy sections.

Table 2. Values for steps �t .

Currency �t

Pound 0.000 02
French franc 0.000 31
Canadian dollar 0.000 0023
Indian rupee 0.054
Sri Lankan rupee 0.02
Yuan 0.000 55

to a negative kurtosis value thanks perhaps to the fact that our sum procedure requires
stationarity of the actual series. Since this may sometimes not occur, nonstationarity may
affect asymptotic kurtosis behaviour.
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Figure 2. Histograms of nt . Section t for every currency corresponds to the variance time τt = 10.

Table 3. Value of t for the section corresponding to τt = 10.

Currency t

Pound 0.000 46
French franc 0.006 82
Canadian dollar 0.000 0506
Indian rupee 0.0584
Sri Lankan rupee 0.1
Yuan 0.012 10

What happens from the perspective of actual time? Assuming the variance time τ = 10
as an equilibrium benchmark, we can take the section t corresponding to that time for every
currency. Table 3 lists the values of t for the exchange rate series. We can obtain the collection
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Table 4. Values of nt for τt = 10.

Currency 〈nt 〉
Pound 15.04
French franc 23.13
Canadian dollar 17.26
Indian rupee 246.20
Sri Lankan rupee 79.06
Yuan 323.39

Table 5. Kurtosis of the Gaussian IIDR and of the original series.

Currency IIDR series’ kurtosis Original series’ kurtosis

Pound 6.76 4.76
French franc 10.04 8.54
Canadian dollar 7.73 5.37
Indian rupee 118.9 118.3
Sri Lankan rupee 124.3 288.7
Yuan 1547.7 3486.1

nt as defined in section 3, and also calculate 〈nt 〉: the average number of terms of the sums
of section t . Figure 2 shows histograms of the collections nt and table 4 presents 〈nt 〉 for the
exchange rates.

Compared to the histograms of emerging markets’ currencies, the histograms of developed
markets’ currencies tend to cluster in a near-zero value. And the average number of days
〈nt 〉 corresponding to the stationary limit σt = 10 of the sections t of developed countries’
currencies is smaller than that of emerging markets’ currencies (the values of t are those
displayed in table 3). These features may be related to the degree of government intervention
in the emerging markets’ currencies. A fixed exchange rate regime would mean zero volatility
(constant rate) and a return series dominated by zeros. China, for instance, kept an 11-year-old
peg of its currency, the yuan, at 8.28 to the dollar. But there were also four big episodes of
revaluation in the yuan–dollar returns’ series considered. This caused an interesting effect.
Because volatility nears zero most days, one needs to accumulate more days to fulfil a
given section condition t . Table 5 shows the yuan’s 〈nt 〉 greater than that of the other
currencies. Indian and Sri Lankan rupees present smaller values but still greater than those of
the pound, French franc and Canadian dollar. The developed countries’ currencies exhibit very
similar 〈nt 〉.

Figure 3 shows histograms related to the currencies’ local volatility. The yuan’s volatility
clusters in zero, unlike those of developed countries’ currencies. This explains the observed
patterns in the histogram of nt (figure 2).

5. A suggested gauge of exchange rate control

As an exercise, we put forward a qualitative gauge of foreign exchange intervention using
a Gaussian generator. Consider a Gaussian random generator of reduced variables that are
independent and identically distributed (IIDR) [5]. Then consider the sequence zn = mngn,
n = 1, . . . , N − 2q (with q = 2 in the empirical example), where gn is generated by a normal
distribution, and mn is the local volatility. What is special here is that the volatility process
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Figure 3. Distributions of the local volatilities of trading weeks (q = 2 in the corresponding
formulae in section 3).

is not modelled, but taken from the data. If mn is constant, the distribution of zn = mngn

collapses to a Gaussian. The middle column of table 5 shows the kurtosis of the IIDR applied
to the exchange rates. The right-hand side column shows the kurtosis of the original series
of daily returns. The effect of the local volatilities is unambiguous. Because the generator is
Gaussian, the elevated kurtosis should be explained by the volatilities.

Thanks to exchange rate pegs, return dispersion is low at the days a rate is fixed. Thus, a
number of return observations fall out of the variance interval (by variance interval we mean
the symmetric interval around the mean that is two standard deviation wide and with respect
to the original returns series; and this without taking the sections into account). The elevated
kurtosis in emerging markets’ exchange rates can then be explained by too many observations
outside the variance interval. This rationale is simpler than the more usual ones based on fat
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Table 6. Intervention scale: IIDR series’ kurtosis relative to IIDR pound–dollar return series’
kurtosis.

Currency Intervention scale

Pound 1.0
French franc 1.48
Canadian dollar 1.14
Indian rupee 17.60
Sri Lankan rupee 18.39
Yuan 228.97

tails and dependence. The Levy sections filter the effects on the local volatility so that the
return series present a near-Gaussian similar pattern.

Exchange rate time series are commonly believed to be modelled by a Gaussian whenever
government intervention is absent. This is because government intervention introduces
patterns in the series that can be exploited by market participants to improve their forecasts.
With free float the market is more likely to be efficient in the sense that the properly anticipated
prices fluctuate randomly [20]. Our results show that foreign exchange intervention provokes
departures from the Gaussian in that it biases the volatility evolution. So the greater the
control, the greater the kurtosis. This is so because the pegs tend to bring a series’ dispersion
closer to zero, thereby rendering many observations out of the distribution’s variance interval.
Thus, the kurtosis reckoned in the IIDR can be seen as a gauge of peg duration. Normalizing
the pound–dollar’s kurtosis to unity, we can get a relative intervention scale (table 6). Note
that this gauge is qualitative in that no quantitative relation between the kurtosis ratios and the
peg durations is provided. This might be one interesting topic for future research.

6. Conclusion

Levy’s notion of sections was a tool for him to outline a proof for the generalization of the
classical central limit theorem to consider the sums of dependent random variables [7]. This
paper extends his technique to time series. Though the Levy sections do not consider actual
time, the notion of a variance time for their sum that converges to a Gaussian can be useful for
our purposes. So the sections can be designed to consider only the local volatility. Employing
historical daily returns of selected dollar exchange rates, we calculate the local volatilities of
their trading weeks. Doing so, we find a similar behaviour in the actual series.

Unlike in the conventionally ordered exchange rate time series, we find kurtosis
convergence towards a well-defined asymptotic state in their correspondent Levy sections.
We also find the time of kurtosis convergence to be short. This is similar for the currencies
considered. The kurtosis convergence approaches zero. And in the Levy sections, the
convergence occurs towards a distribution resembling the Gaussian.

As an exercise, we employ our approach to show that the extra elevated kurtosis of
emerging markets’ exchange rates can be explained by too many observations outside the
variance interval. This is so thanks to the duration of exchange rate pegs. Foreign exchange
intervention provokes departures from the Gaussian in that it biases the volatility evolution.
So the greater the control, the greater the kurtosis.

We finally suggest a qualitative gauge of peg duration based on the kurtosis reckoned in
the Gaussian generator and leave the search for a quantitative gauge for future research.
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